Proposal for Air-saving System
— Contributes to CO₂ emissions reduction —

Air Blow

- **Nozzles for Blowing**
 - Through the use of a smaller diameter nozzle, air consumption can be reduced by 62%.

- **Pulse Valve**
 - High peak pressure and low air consumption, 35% reduction.

- **Impact Blow Gun**
 - Air consumption, 85% reduction.

Vacuum Equipment

- **Vacuum Ejector**
 - Due to the energy-saving function, air consumption can be reduced by 93%.

Actuators

- **Air Saving Speed Controller**
 - By simply mounting on your current air cylinder, air consumption can be reduced by 25%.

- **Air Cylinder**
 - By selecting an optimal size air cylinder, air consumption can be reduced by 29%.

- **Booster Regulator**
 - Power consumption, 40% reduction.

SMC.
Successful cases of companies that implemented measures for energy saving

<table>
<thead>
<tr>
<th>Company A performance</th>
<th>Company B performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>Electricity</td>
</tr>
<tr>
<td>3000 kW</td>
<td>10000 kW</td>
</tr>
<tr>
<td>1400 kW</td>
<td>7000 kW</td>
</tr>
<tr>
<td>CO₂</td>
<td>CO₂</td>
</tr>
<tr>
<td>0.9 t reduction/year</td>
<td>1.7 t reduction/year</td>
</tr>
<tr>
<td>Cost</td>
<td>Cost</td>
</tr>
<tr>
<td>₹52.9 million</td>
<td>₹99.2 million</td>
</tr>
<tr>
<td>reduction/year</td>
<td>reduction/year</td>
</tr>
</tbody>
</table>

We will help you save energy.
- We will help you to improve and standardize your equipment and adopt new equipment.
- We also proactively promote activities through official organizations, such as holding seminars at the Energy Conservation Center.
CONTENTS

Air Blow
Nozzles for Blowing KN Series .. p. 3
Intermittent Blow Circuit IZE110-X238 ... p. 4
Pulse Valve Valve for Dust Collector JSXFA Series p. 5

Blowing by Air Gun
Blow Gun VMG Series ... p. 6

Air Purge
Digital Gap Checker ISA3 Series .. p. 7

Actuators
Air Cylinder JMB Series .. p. 8
Double Power Cylinder MGZ Series .. p. 9
Compact Cylinder with Solenoid Valve CVQ Series p. 10
Booster Regulator VBA Series ... p. 11
Air Saving Speed Controller AS-R/AS-Q Series p. 12

Vacuum Equipment
Vacuum Ejector ZK2 Series ... p. 13
Multistage Ejector ZL112A Series ... p. 14

Lower Piping Line Pressure
S Couplers KK130 Series ... p. 15

Low Power Consumption
3/4/5-Port Solenoid Valve .. p. 16
Refrigerated Air Dryer IDP-IFS Series .. p. 17

Information
Booster Regulator (Size: 10A) VBA-X3145 p. 18
Air Saving Impact Blow Gun IBG1 Series p. 18
Nozzles for Blowing KN Series

Air consumption can be reduced through the use of a smaller diameter nozzle.

Blow circuit that facilitates effective pressure use

Energy-saving Model

<table>
<thead>
<tr>
<th>Supply pressure: 0.3 MPa</th>
<th>Pressure right before: 0.29 MPa</th>
<th>Impact pressure: 0.003 MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø1.5 mm nozzle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Collective piping: TU0805, 2 m
Intermediate and end piping:
TU0604, 0.5 m each
Distance: 100 mm

Air consumption per nozzle:
74 L/min (ANR)

Blow time: 2 sec.
Annual operating cycles: 900000

Reduction:
62%

4464 m³/year (ANR)

(₹3370/year)
(₹5329/year reduction)

Existing Model

<table>
<thead>
<tr>
<th>Supply pressure: 0.3 MPa</th>
<th>Pressure right before: 0.05 MPa</th>
<th>Impact pressure: 0.003 MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø4 mm copper tube</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Collective piping: TU0805, 2 m
Intermediate and end piping:
TU0604, 0.5 m each
Distance: 100 mm

Air consumption per nozzle:
192 L/min (ANR)

Blow time: 2 sec.
Annual operating cycles: 900000

11520 m³/year (ANR)

(₹8699/year)

Corresponding value: Air unit ₹0.76/m³ (ANR)
Intermittent Blow Circuit IZE110-X238

By using intermittent blow based on an intermittent control timer, air consumption can be reduced by 50%.

Intermittent Blow Circuit

[Output under timer control]

- Valve
- Solenoid valve
- Intermittent control timer IZE110-X238
- Switch
- Trigger input
- 24 V

Continuous Blow Circuit

Existing Circuit

Energy-saving Circuit

The duty ratio can be freely adjusted.
By setting the duty ratio to one that has the same blow effectiveness, air consumption can be reduced.

Example:

<table>
<thead>
<tr>
<th>Q (L/min)</th>
<th>ON</th>
<th>ON</th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Existing Circuit

The duty ratio is equivalent to 100%.

<table>
<thead>
<tr>
<th>Q (L/min)</th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Intermittent Blow Circuit

Pressure right before: 0.2 MPa
Blow time: 10 s
(Frequency: 12 times/h)
One blow operation:
ON for 1 s, OFF for 1 s;
Repeated a total of 5 times
Working hours: 10 h/day (250 days/year)
Nozzle diameter: 1 mm

318.2 m³/year (ANR)
(₹240/year reduction)

Effects of Energy Saving

50% reduction

Existing Circuit

Pressure right before: 0.2 MPa
Blow time: 10 s
(Frequency: 12 times/h)
Working hours: 10 h/day (250 days/year)
Nozzle diameter: 1 mm

636.3 m³/year (ANR)
(₹480/year)

Corresponding value: Air unit ₹0.76/m³ (ANR)
Pulse Valve

Valve for Dust Collector

JSXFA Series

- **Peak pressure**
 - 15% * increase

- **Air consumption**
 - 35% * reduction

*1 When the pilot valve mounted on the JSXFA-06 is energized (ON time) for 100 ms

OFF response time: 45% reduction

Energy-saving Model

- Optimized internal geometry
- Improved response

Injection quantity per cycle:

57 L/cycle (ANR)

Pressure: 0.9 MPa
Energizing time: 100 ms
Annual operating cycles: 240000

- **13680 m³/year (ANR)**
- **(₹10331/year)**
- **(₹5618/year reduction)**

Existing Model

- Flow path construction with a large pressure loss
- Long response time

Injection quantity per cycle:

88 L/cycle (ANR)

Pressure: 0.9 MPa
Energizing time: 100 ms
Annual operating cycles: 240000

- **15449 m³/year (ANR)**
- **(₹15949/year)**

Corresponding value: Air unit ₹0.76/m³ (ANR)
Blow Gun VMG Series

Power consumption can be reduced by 20% with the SMC blow gun + S coupler + coil tube combination.
- 10% reduction with only the blow gun (VMG)

Example of Improvement

Review the blow work and change to the SMC blow gun, S coupler, and coil tube combination to create a larger effective area.

Energy-saving Model

Impact pressure: 0.011 MPa (Distance: 100 mm)
Blow time: 10 s (Frequency: 12 times/h)
Working hours: 10 h/day (250 days/year)
Total working hours: 8300 h
Compressor pressure: 0.5 MPa
Air consumption: 257 L/min (ANR)

Power consumption by compressor: 1.25 kW
(₹72625/year)
(₹18011/year reduction)

Existing Model

Impact pressure: 0.011 MPa
(Distance: 100 mm)
Blow time: 10 s
(Frequency: 12 times/h)
Working hours: 10 h/day
(250 days/year)
Total working hours: 8300 h
Compressor pressure: 0.5 MPa
Air consumption: 287 L/min (ANR)

Power consumption by compressor: 1.56 kW
(₹90636/year)

Corresponding value: Electricity unit ₹7/kWh
Digital Gap Checker ISA3 Series

Air consumption when a workpiece is seated is now 0 L/min due to the new detection principle.

60% reduction

Comparison of detection circuit

- **New ISA3**
 - S1: Fixed orifice
 - S2: Detection nozzle

- **Existing model (ISA2)**
 - S1, S2: Fixed orifice
 - S3: Variable orifice (Adjusted by setting dial)
 - S4: Detection nozzle

Due to the new detection principle, the need for air to be exhausted from the product has been eliminated. This makes the flow consumption 0 L/min when a workpiece is seated.

The result is a great reduction in air consumption compared with the existing model.

- Conditions: Unsealed for 5 seconds and sealed for 20 seconds (For the G type)

Energy-saving Model

<table>
<thead>
<tr>
<th>Energy-saving Model</th>
<th>Existing Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Air consumption</td>
<td>- Air consumption</td>
</tr>
<tr>
<td>When placed: 0 L/min (ANR)</td>
<td>When placed: 4 L/min (ANR)</td>
</tr>
<tr>
<td>When not placed: 10 L/min (ANR)</td>
<td>When not placed: 10 L/min (ANR)</td>
</tr>
<tr>
<td>- Air consumption per cycle: 0.83 L/cycle (ANR)</td>
<td>- Air consumption per cycle: 208 L/cycle (ANR)</td>
</tr>
<tr>
<td>Annual operating cycles: 860000</td>
<td>Annual operating cycles: 860000</td>
</tr>
<tr>
<td>Air consumption (When placed): 0 L/min (ANR)</td>
<td>Air consumption (When placed): 4 L/min (ANR)</td>
</tr>
<tr>
<td>717 m³/year (ANR)</td>
<td>1789 m³/year (ANR)</td>
</tr>
<tr>
<td>(₹541/year)</td>
<td>(₹1351/year)</td>
</tr>
<tr>
<td>(₹810/year reduction)</td>
<td></td>
</tr>
</tbody>
</table>

Corresponding value: Air unit ₹0.76/m³ (ANR)

Effects of Energy Saving

- 60% reduction

SMC
Air consumption can be reduced by selecting an optimal size air cylinder.

Intermediary Bore Sizes
Air consumption can be reduced by up to 29%

<table>
<thead>
<tr>
<th>Bore size (mm)</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>56</th>
<th>63</th>
<th>67</th>
<th>80</th>
<th>85</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air consumption L/min (ANR)</td>
<td>1.4</td>
<td>1.8</td>
<td>2.2</td>
<td>2.8</td>
<td>3.6</td>
<td>4.1</td>
<td>5.8</td>
<td>6.6</td>
<td>9.1</td>
</tr>
</tbody>
</table>

Conditions/Supply pressure: 0.5 MPa
Load factor: 50%, At 100 mm stroke

18% reduction
22% reduction
29% reduction
27% reduction

Example Bore size for 85 kg workpieces
Conditions/Supply pressure: 0.5 MPa, Load factor: 50%

<table>
<thead>
<tr>
<th>Bore size (mm)</th>
<th>Theoretical output (N)</th>
<th>Output for load factor of 50% (kg)</th>
<th>Judgment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ø63</td>
<td>1559</td>
<td>79.5</td>
<td>Not acceptable (Insufficient)</td>
</tr>
<tr>
<td>ø80</td>
<td>2513</td>
<td>128.2</td>
<td>Acceptable (Excessive)</td>
</tr>
</tbody>
</table>

When intermediary bore size ø67 is used

| ø67 | 1763 | 89.9 | OK |

Existing size: ø80
Could be switched to intermediary bore size ø67

Energy-saving Model

Bore size: ø67
Stroke: 100 mm
Pressure: 0.5 MPa
Load factor: 50%

Per single reciprocation: 4.1 L/min (ANR)

When it is operated 1000000 times/year

4100 m³/year (ANR) (₹3096/year)

29% reduction

4100 m³/year (ANR) (₹1284/year reduction)

Existing Model

Bore size: ø80
Stroke: 100 mm
Pressure: 0.5 MPa
Load factor: 50%

Per single reciprocation: 5.8 L/min (ANR)

When it is operated 1000000 times/year

5800 m³/year (ANR) (₹4380/year)

Corresponding value: Air unit ₹0.76/m³ (ANR)
Air consumption can be reduced by **14%** due to the reduced cylinder size.

It is possible to reduce air consumption in the retracting direction, compared with a standard cylinder with equivalent output in the extending direction, due to the doubled piston area in the extending direction.

Double extension output power!

SMC’s unique cylinder construction doubles the piston area in the extending direction. This is an ideal air cylinder for lifting and press applications.

<table>
<thead>
<tr>
<th>Cylinder Size</th>
<th>Piston Area</th>
<th>Extension</th>
<th>Retraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø63</td>
<td></td>
<td>5945 mm²</td>
<td>2313 mm²</td>
</tr>
<tr>
<td>Ø80</td>
<td></td>
<td>5030 mm²</td>
<td>4640 mm²</td>
</tr>
</tbody>
</table>

Energy-saving Model

- **Bore size:** Ø63
- **Stroke:** 200 mm
- **Pressure on the extension side:** 0.5 MPa
- **Theoretical output (Extension side):** 2973 N
- **Per single reciprocation:** 9.9 L (ANR)
- **When it is operated 900000 times/year:**
 - **8839 m³/year (ANR)**
 - **₹6729/year**
 - **(₹1087/year reduction)**

Existing Model

- **Bore size:** Ø80
- **Stroke:** 200 mm
- **Pressure:** 0.5 MPa
- **Theoretical output (Extension side):** 2520 N
- **Per single reciprocation:** 11.5 L (ANR)
- **When it is operated 900000 times/year:**
 - **10350 m³/year (ANR)**
 - **₹7816/year**

Corresponding value: Air unit ₹0.76/m³ (ANR)
Energy Saving

Air consumption between the valve and cylinder can be reduced by approximately 37%.

Valve and compact cylinder integrated for compactness

Energy-saving Model

CVQ
Bore size: Ø32
Stroke: 50 mm
No piping between the valve and the cylinder
Supply pressure: 0.5 MPa

Per single reciprocation: 0.42 L (ANR)
When it is operated 900000 times/year
380 m³/year (ANR) (₹287/year)
(₹171/year reduction)

Effects of Energy Saving

Existing Model

CQ2
Bore size: Ø32
Stroke: 50 mm
Piping bore: 4 mm
Piping length: 2 m (Between the valve and the cylinder)
Supply pressure: 0.5 MPa

Per single reciprocation: 0.67 L (ANR)
When it is operated 900000 times/year
606 m³/year (ANR) (₹458/year)

Corresponding value: Air unit ₹0.76/m³ (ANR)
Air consumption can be reduced by **33%** due to the optimization of the booster circuit.

Boost an insufficiently powered portion with a booster regulator

- Optimized booster circuit: Now with a space-saving booster circuit

Example of a one-side booster circuit
(Boosting pressure on the operating stroke only)

Example of a two-side booster circuit

Energy-saving Circuit

When boosting pressure is on the extension side only
Retraction: 0.4 MPa
Extension: 0.8 MPa (Boosting pressure)

Per single reciprocation: **8.7 L (ANR)**
When it is operated 900,000 times/year

7830 m3/year (ANR)
(**₹5913/year**) **(₹2923/year reduction)**

Corresponding value: **Air unit ₹0.76/m3 (ANR)**

Existing Circuit

Bore size: ø50
Stroke: 200 mm
Pressure: 0.4 MPa
Boosting pressure: 0.8 MPa

Per single reciprocation: **13 L (ANR)**
When it is operated 900,000 times/year

11700 m3/year (ANR)
(**₹8836/year**)
Air Saving Speed Controller AS-R/AS-Q Series

Reduce air consumption just by mounting to your current air cylinder!

Mounting and operation are the same as a regular speed controller.

By reducing the pressure on the return stroke to 0.2 MPa, air consumption can be reduced.

When it is not necessary to apply force at the end of the working stroke, by using a lifter, pusher, etc.

Energy-saving Model

Bore size: ø50
Stroke: 200 mm
Pressure on the extension side: 0.5 MPa
Pressure on the retraction side: 0.2 MPa

Per single reciprocation:
3.3 L/min (ANR)

When it is operated 900000 times/year
3011 m³/year (ANR)
(₹2213/year)

3902 m³/year (ANR)
(₹2947/year)

Existing Model

Bore size: ø50
Stroke: 200 mm
Pressure: 0.5 MPa

Per single reciprocation:
4.3 L/min (ANR)

When it is operated 900000 times/year
3902 m³/year (ANR)
(₹2947/year)

Corresponding value: Air unit ₹0.76/m³ (ANR)
Vacuum Ejector ZK2 Series

Energy-saving Ejector

The digital pressure switch for vacuum with energy-saving function cuts supply air when the pressure reaches the desired vacuum.

![Diagram of vacuum ejector system]

- **Air consumption**
 - **93%** reduction

 *1 Based on SMC’s measuring conditions

The digital pressure switch with energy-saving function can reduce air consumption by 90%.

*2 Based on SMC’s measuring conditions

While the suction signal is ON, the ON/OFF operation of the supply valve is also performed automatically within the set value.

Energy-saving Model

- **Air consumption**: 58 L/min (ANR)
- **Vacuum suction flow rate**: 61 L/min (ANR)
- **Vacuum generation time**: 0.6 s/cycle
- **Annual operating cycles**: 110,000
 - (450 cycles/h, 10 h/day, 250 days/year)

Existing Model

- **Air consumption**: 85 L/min (ANR)
- **Vacuum suction flow rate**: 44 L/min (ANR)
- **Vacuum generation time**: 6 s/cycle
- **Annual operating cycles**: 110,000
 - (450 cycles/h, 10 h/day, 250 days/year)

Energy-saving Model

- **Air consumption (When placed)**: 58 L/min (ANR)
- **638 m³/year (ANR)**
 - (₹482/year)
- (₹7061/year reduction)

Effects of Energy Saving

- **93% reduction**

Existing Model

- **Air consumption (When placed)**: 85 L/min (ANR)
- **9350 m³/year (ANR)**
 - (₹6579/year)

Corresponding value: Air unit ₹0.76/m³ (ANR)

Vacuum Equipment
Air consumption can be reduced by 10% due to the optimization of the diffuser flow path.

3-stage diffuser construction

Suction flow rate increased by 250% (Versus ø1.3, 1-stage model)

Energy-saving Model

- Standard supply pressure: 0.33 MPa (Without valve)
- Maximum vacuum pressure: –84 kPa
- Maximum suction flow rate: 100 L/min (ANR)
- Air consumption: 57 L/min (ANR)

When work is carried out for 2500 hours per year, and 30 minutes per hour

4275 m³/year (ANR)
(Rs3228/year)
(Rs340/year reduction)

Effects of Energy Saving

Existing Model

- Standard supply pressure: 0.4 MPa
- Maximum vacuum pressure: –84 kPa
- Maximum suction flow rate: 100 L/min (ANR)
- Air consumption: 63 L/min (ANR)

When work is carried out for 2500 hours per year, and 30 minutes per hour

4725 m³/year (ANR)
(Rs3568/year)

Corresponding value: Air unit Rs.76/m³ (ANR)
The built-in valve is of a special shape, resulting in reduced pressure loss.

Pressure loss
7% reduction

S Couplers KK130 Series

Compressor

Inlet pressure

Outlet pressure
0.5 MPa

Constantly used between 0 and 2 m³/min (ANR)

Energy-saving Model

Operating pressure at the outlet: 0.5 MPa
Compressor efficiency: 0.7
Annual operating time: 2500 hours
Flow rate: 1.2 m³/min (ANR)

Inlet pressure:
0.54 MPa

7% reduction

Power consumption by compressor:
₹118926/year
(₹8474/year reduction)

Existing Model

Operating pressure at the outlet: 0.5 MPa
Compressor efficiency: 0.7
Annual operating time: 2500 hours
Flow rate: 1.2 m³/min (ANR)

Inlet pressure:
0.58 MPa

Power consumption by compressor:
₹127400/year

Corresponding value: Electricity unit ₹7/kWh
3/4/5-Port Solenoid Valve

The power-saving circuit can reduce the consumption of electric power when the device is energized.

- Reduces power consumption when energized

Power consumption can be reduced by approx. 1/4 by reducing the wattage required to hold the valve in an energized state. (Effective energizing time is over 62 ms at 24 VDC.) Refer to the electrical power waveform as shown below.

Electrical power waveform with power-saving circuit

<table>
<thead>
<tr>
<th>Type</th>
<th>Model</th>
<th>Power consumption W*2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
<td>With power-saving circuit</td>
</tr>
<tr>
<td>4/5-port</td>
<td>SJ2000</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>SJ3000</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>New SY3000/5000/7000</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>SY3000/5000/7000/9000</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>SYJ3000/5000/7000</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>VF1000/3000/5000</td>
<td>1.55</td>
</tr>
<tr>
<td>3-port</td>
<td>SYJ300/500/700</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>VP300/500/700</td>
<td>1.55</td>
</tr>
<tr>
<td></td>
<td>V100</td>
<td>0.4</td>
</tr>
</tbody>
</table>

*1 SY/SYJ series

*2 With DC light

Energy-saving Model

SY: 0.1 W
(With power-saving circuit)

292 Wh/year
(₹204.4/year)

Power consumption per valve:
(₹613/year reduction)

75% reduction

Existing Model

SY: 0.4 W

1168 Wh/year (ANR)
(₹818/year)

Corresponding value: Electricity unit ₹7/kWh

*For 100 valves
Refrigerated Air Dryer IDF□FS Series

Double energy-saving function series

Power consumption 76% reduction

The addition of a second re-heater + digital scroll results in high energy savings.

Energy-saving design

Up to a 76% (1 kW)*1 reduction

*1 Operating conditions: The IDF-125FS in energy-saving operation mode
- Ambient temperature 32°C
- Inlet air temperature 40°C
- Inlet air pressure 0.7 MPa
- Air flow rate = Rated flow x 0.4
- Power supply frequency 60 Hz
- Power supply voltage 200 V
- Set dew point = 30°C

Example 1 year (Spring to Winter) Power consumption

Compared with the standard model (constant compressor operation), the double energy-saving function series can reduce power consumption by 43%!

*1 The IDF-125FS was used for this example.

Double energy-saving function series (IDF125FS)

Standard model (IDF125F)

* [Trial calculation conditions] Days of operation per year = 240 days (60 days each in spring, summer, autumn, and winter), Operating hours per day = 12 hours
For details about the dryer operating conditions for each season, refer to the Web Catalog (IDF□FS series).
Booster Regulator (Size: 10A) VBA-X3145

- 3 piston construction
- The drive chamber on one side can be operated by the exhaust return circuit.

Air consumption 40% reduction

Operation noise: 65 dB (A)

15 dB (A) reduction compared with the existing model (VBA series)
- Exhaust noise: Reduced noise due to exhaust of reused low-pressure air
- Metallic noise: Reduced noise due to the adoption of a construction in which the internal switching part doesn’t come into contact with any metal parts

Air Saving Impact Blow Gun IBG1 Series

Increased impact force due to higher peak pressure
Drastic reduction in air consumption and labor time

High peak pressure 3 times or more (Compared with the existing model)
Air consumption 85% reduction

Existing blow gun
Air consumption: 17 L
New blow gun
Air consumption: 2.5 L

Air consumption:
- 85% reduction
- Labor time: 90% reduction

*1 Based on SMC’s measuring conditions
*2 Based on SMC’s measuring conditions

*3 According to blow requirements
*4 Pressure: 0.5 MPa (Based on SMC’s specific testing conditions)

Please contact your local sales representative for more details.